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New Analytic Approaches:  
Analyzing the Impact of Subsidy Receipt on 

Quality in Longitudinal Data 



Research Questions 

(1)  Do child care subsidies allow parents to purchase 
higher-quality care than they could otherwise 
afford? 

  Subsidy use when children are in preschool 

  Quality when children are 2 and in preschool  

(2)  Does use of a subsidy lead to greater school 
readiness? 

  Subsidy use when children are in preschool 

  Child outcomes in preschool and kindergarten 



Motivating the Issue:  
Why Do We Need New Approaches? 

  Estimates from non-experimental studies may misstate the 
true causal impact of subsidy receipt on child care quality 

  Selection bias: family characteristics related to subsidy 
receipt may also predict child care quality 

  Omitted variable bias: excluding other independent 
variable(s), correlated with subsidy use, that may predict 
quality 

  What to do? 



Newer Analytic Approaches 

  Capitalize on rich longitudinal data of the ECLS-B 

  Traditional method  OLS regression with extensive 
controls 

  Better  Propensity score matching 

  Best  Difference-in-Difference matching 



Propensity Score Matching 

  Mimics randomization  

  Matches cases on observable characteristics 

  Excludes cases with no matches –subsidy recipients 
who are unlike all non-recipients on observable 
characteristics 



Receives subsidies 

Does not receive subsidies 

Self-selection into treatment groups 



Receives subsidies 

Does not receive subsidies 

Propensity Score Matching: 
Identifies Most Similar Groups 



Propensity Score Matching 

  The propensity score represents likelihood of 
receiving a subsidy 

  It is a one-dimensional summary score of all 
covariates 

  Treated cases are then matched with untreated cases 
based on the propensity score 



Overlap Histogram 



Limitations of Propensity Score Matching 

  Selection on observables – differences may remain 
after matching! 

  Need to account for unmeasured covariates that may 
predict the treatment, the outcome, or both 

  Solution: exploit longitudinal data to control for 
unobserved characteristics of individuals that are 
time invariant 



Difference-in-Difference Matching 

  Estimate propensity scores 
  Calculate change in quality from age 2 to preschool for 

children who did not have subsidies at age 2 but did in 
preschool and… 

  Compare to the change in quality from age 2 to 
preschool for those who never received subsidies: 

              Recipients        Non-recipients 
(QualityPreschool – QualityAge2) – (QualityPreschool – QualityAge2) 



Limitations of Difference-in-Difference Matching  

  Only uses cases that did not have subsidy at Age 2 

 Reduces sample size 

 Who are the “changers”? 

  Unobservable variables may not be time-invariant 
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